- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Bakas, Spyridon (4)
-
Biros, George (2)
-
Davatzikos, Christos (2)
-
Mang, Andreas (2)
-
Subramanian, Shashank (2)
-
Akbari, Hamed (1)
-
Aslam, Heena (1)
-
Asturias, Alexander (1)
-
Aylward, Stephen (1)
-
Batmanghelich, Kayhan (1)
-
Belkov, Arseniy (1)
-
Calisto, Maria Baldeon (1)
-
Cardoso, Jorge (1)
-
Choi, Jae Won (1)
-
Dawant, Benoit M. (1)
-
Dong, Hexin (1)
-
Dorent, Reuben (1)
-
Escalera, Sergio (1)
-
Fan, Yubo (1)
-
Glocker, Ben (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Central nervous system (CNS) tumors come with vastly heterogeneous histologic, molecular, and radiographic landscapes, rendering their precise characterization challenging. The rapidly growing fields of biophysical modeling and radiomics have shown promise in better characterizing the molecular, spatial, and temporal heterogeneity of tumors. Integrative analysis of CNS tumors, including clinically acquired multi-parametric magnetic resonance imaging (mpMRI) and the inverse problem of calibrating biophysical models to mpMRI data, assists in identifying macroscopic quantifiable tumor patterns of invasion and proliferation, potentially leading to improved ( a) detection/segmentation of tumor subregions and ( b) computer-aided diagnostic/prognostic/predictive modeling. This article presents a summary of ( a) biophysical growth modeling and simulation,( b) inverse problems for model calibration, ( c) these models' integration with imaging workflows, and ( d) their application to clinically relevant studies. We anticipate that such quantitative integrative analysis may even be beneficial in a future revision of the World Health Organization (WHO) classification for CNS tumors, ultimately improving patient survival prospects.more » « less
-
Pati, Sarthak; Sharma, Vaibhav; Aslam, Heena; Thakur, Siddhesh P.; Akbari, Hamed; Mang, Andreas; Subramanian, Shashank; Biros, George; Davatzikos, Christos; Bakas, Spyridon (, BrainLes 2020: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries)
-
Dorent, Reuben; Kujawa, Aaron; Ivory, Marina; Bakas, Spyridon; Rieke, Nicola; Joutard, Samuel; Glocker, Ben; Cardoso, Jorge; Modat, Marc; Batmanghelich, Kayhan; et al (, Medical Image Analysis)
-
Han, Xu; Kwitt, Roland; Aylward, Stephen; Bakas, Spyridon; Menze, Bjoern; Asturias, Alexander; Vespa, Paul; Van Horn, John; Niethammer, Marc (, NeuroImage)
An official website of the United States government
